Multiple Hypothesis Target Tracking Using Merge and Split of Graph's Nodes
نویسندگان
چکیده
In this paper, we propose a maximum a posteriori formulation to the multiple target tracking problem. We adopt a graph representation for storing the detected regions as well as their association over time. The multiple target tracking problem is formulated as a multiple paths search in the graph. Due to the noisy foreground segmentation, an object may be represented by several foreground regions and one foreground region may corresponds to multiple objects. We introduce merge, split and mean shift operations that add new hypothesis to the measurement graph in order to be able to aggregate, split detected blobs or re-acquire objects that have not been detected during stop-and-gomotion. To make full use of the visual observations, we consider both motion and appearance likelihood. Experiments have been conducted on both indoor and outdoor data sets, and a comparison has been carried to assess the contribution of the new tracker.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملGlobally Optimum Multiple Object Tracking
Robust and accurate tracking of multiple objects is a key challenge in video surveillance. Tracking algorithms generally suffer from either one or more of the following problems, excluding detection errors. First, objects can be incorrectly interpreted as one of the other objects in the scene. Second, interactions between objects, such as occlusions, may cause tracking errors. Third, globally-o...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کامل